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Chapter 1 
 

Introduction 
 

 

Contours
1
 are the boundary lines of geometric shapes within digital images; see Fig. 1.1. 

Since the identification of contours is crucial for analyzing the contents of an image, contour 

extraction is one of the most important problems in Image Processing and pattern recognition. 

Once object contours have been extracted, several shape features that are useful for 

identifying and classifying objects can be determined. These features include perimeter 

length, irregularity, width, height, aspect ratio, and area. However, this problem is especially 

difficult for images with complex shapes and with noise. 

 

 

 

 

 

 

 

 

 

 

 

Fig 1.1 Digital image of shapes and corresponding contours 

 

In the mentioned reference paper, a method for automatically extracting contours of 

arbitrary shapes from digital images using techniques from computational geometry is 

presented. The aim is to show how a combination of simple geometric algorithms can be used 

effectively to extract contours even from images with a moderate amount of noise. 

 

1 
We use the term contour as used in image processing to refer to lines and object boundaries. In 

mathematics, a contour line of a function of two variables is a curve along which the function has a constant 

value. In cartography, a contour line joins points of equal elevation (height) above a given level, such as mean 

sea level. For detailed information see http://en.wikipedia.org/wiki/Contour line. 
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1.1     Standard Definitions 

 

A digital image is a discrete approximation of an image obtained by sampling points 

with discrete coordinates and quantizing the values of each sample. It is formed by a finite 

number of sample elements equally spaced over a square grid with a rectangular shape. Each 

element is called a pixel and has an intensity value. The rows and columns of elements 

determine the spatial coordinates (x, y) of the pixel;  

And the intensity determines its gray-scale or color value. In a gray-scale image, all 

pixels have shades of gray ranging from black to white. In the case of color images, the 

intensity determines the color of each pixel according to some color model, such as RGB. A 

digital image is stored as a two-dimensional array (usually of integers), wherein each element 

and its value correspond to a pixel and its intensity, respectively. When a digital image is 

displayed, each pixel is represented by a small square with a unique color determined by its 

intensity. See Fig. 1.2 for examples of continuous and digital images. 

 

 

Fig 1.2 Continuous image (Left) and corresponding digital image 

 

Contours are lines, straight or curved, that define forms or shapes. They can be open 

lines, or they can be closed boundaries. Contours can be represented by pixels, for example, 

with black pixels over a white background or vice versa. However, even when they can 

visually represent the contours of an image, these pixels alone do not provide a complete 

characterization of the contours. Contours are lines, not independent pixels; so in order to 

have contours defined by pixels, more information is needed. A sequence of consecutive 

adjacent pixels is a possible representation. However, this kind of representation has some 



disadvantages: it requires a lot of space because many pixels are needed; it is not scale 

independent since the number of pixels required changes with the size; and it is discrete, so 

lines are not generally smooth unless numerous pixels are used. Given these drawbacks, a 

geometric representation provides a better way to represent contours, for example, with line 

segments defined by pairs of points. This much simpler representation does not have the 

problems associated with the discrete counterpart. See Fig. 1.3 for examples of pixel-based 

and geometric-based contour representations. 

Fig 1.3 Pixel based contour(Left) and Geometry based Contour 

 

1.2     Nature of Work 

 

We have implemented a thesis [1] partially and proposed an innovation to existing work. 

Apart from that, we experimented for different parameters and came up with optimum values 

of tuning parameters. 

 

1.3     Previous Work 

 

Traditional methods for finding contours can be classified by scope depending on 

whether they do local, regional, or global processing. Local methods analyze a small 

neighbourhood associated with every pixel and link adjacent pixels if they satisfy some 

criteria. Regional methods use different techniques to connect pixels which are previously 

known to be part of the same region or contour. In such cases, geometric algorithms, such as 

polygonal fitting, can be used to efficiently find approximations of contours; however, the 

knowledge required to apply such algorithms is not always available, so they are not 

generally applicable. Global methods, such as the Hough transform, do not rely on any kind 

of prior knowledge, and try to find sets of pixels which lie on curves of specific shapes. 



4  

 

These three methods all present some drawbacks: local methods ignore valuable global 

information about the geometric proximity of pixels, since they only look at a very small 

neighbourhood; regional methods require prior knowledge about which pixels are part of 

which contour; and global methods such as the Hough transform can only be used to find 

certain types of shapes. Our method exploits the global information about the geometric 

proximity of pixels, requires no prior knowledge about the regional membership of pixels, 

and is not restricted to any particular shapes. 

 

Another possible classification for contour extraction algorithms is by the way they 

work. The extraction of line segments from images is an important problem related to contour 

extraction: straight lines are a subset of all possible contours and since any curve can be 

approximated by small segments some contour extraction algorithms are actually line 

extraction algorithms. According to, several models have been reported in the literature for 

the extraction of line segments from images, and these are broadly classified into four 

categories: statistical based, gradient based, pixel connectivity-edge linking based, and 

Hough transform based. The linking algorithms work by connecting edge pixels based on 

proximity and orientation, and dividing the contours into straight line segments. Our method 

uses a linking algorithm, but instead of connecting edge pixels, it uses computational 

geometry to connect oriented points. 

 

Many algorithms related to image processing and specifically contour extraction are 

related to the field of discrete or digital geometry. This field has become more important in 

the last decade, but it has evolved independently of the field of computational geometry. 

However, researchers are now using results from computational geometry to solve problems 

in discrete geometry, and the integration of both fields seems promising. This method for 

extracting contours is a case wherein computational geometry is used to solve a problem in 

discrete geometry: extracting contours from points in a discrete grid. We extract contours 

from digital images by moving to a continuous domain and using well established results 

from computational geometry. The result is not discrete, but the extracted contours could be 

rasterized to discretize them if it is necessary. 

 

 

 

 



1.4     Computational Geometry Approach 

 

This method consists of two stages: a pre-processing stage that extracts a set of oriented 

points from the input image, and a second stage that finds the contours among the oriented 

points using geometric algorithms. The second stage is the most important and has three 

steps: (1) points are first filtered by a clustering technique; (2) then points are linked, based 

on proximity and orientation, into paths representing the contours; (3) and finally paths are 

simplified by reducing the number of points they have. See Fig. 1.4. 

 

 

Fig 1.4 Overview of the method 
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Chapter 2 
 

Oriented Edge Point Detection 
 

We first transform the problem of finding contours into a geometric problem. The goal of 

the pre-processing stage is to find a set of points that are possibly part of the contours. To do 

this, we use an edge detector to extract edge pixels from the image, and then we convert them 

into oriented points. Finding the contours is then a matter of connecting those points into 

meaningful boundaries. 

 

At the pre-processing stage, a Sobel edge detector [2] is used to determine possible 

contour pixels, which are then transformed into oriented points. The edge detector outputs a 

set of edge pixels wherein the intensity of the image changes abruptly. Each edge pixel has a 

magnitude indicating how good or strong the edge at the pixel location is, and a direction 

indicated by an angle. Next, each pixel is transformed into an oriented point pi located at the 

centre (xi, yi) of the pixel, with its orientation αi given by the edge direction, and a weight wi 

initialized with the edge magnitude; see Fig. 2.1. 

 

 

Fig 2.1 Digital image and corresponding oriented edge pixels 

There are many edge detectors that can be used to extract edge pixels; some examples 

include Sobel, Laplacian and Canny. We use a Sobel edge detector, but others could be used 

as well. Since we want to focus on the geometric algorithms of the second stage, and they are 

independent of the method used by the pre-processing stage, this choice is not so relevant. 



However, it is important that the method used return not only the gradient values, but also the 

orientation of gradient, which is used by later parts of the algorithm. 

 

2.1     Implementation 

 
 As mentioned earlier, we have used Sobel edge detector as we need gradient 

magnitude and its orientation. The formulae used for the same are given below. 

 

Grad (i,j) = |Grad_X(i,j) |*0.5 + |Grad_Y(i,j) |*0.5 --   (2.1) 

 

Orientation (i,j) =  atan(Grad_X(i,j)/ Grad_Y(i,j)) – (2.2) 

 

   Threshold (I) = mean (Grad(i,j)) + (255 - mean(Grad(i,j)))/t_par – (2.3) 

Note1:  
The parameter t_par in equation (2.3) is used to change threshold according to image content 

and quality. 

 

Note2:  
As image coordinate axes are different from Euclidean coordinate axes (y axis is inverted). 

To fix this the orientation in equation (2.2) following method can be used. 

 

Method: 
1) Get the orientations in range [-pi,pi] 

2) If orientation is negative make it positive. 

3) If orientation is positive subtract it from PI. 

 

 

2.2     Output 
 

 The output of this stage is ‘oriented edge points’ which has the following structure. 

 

1) X-position 

2) Y-position 

3) Gradient Magnitude 

4) Orientation 

5) Unique Number 

 

Thus each edge point, which is above threshold, would be passed on to the next stage with 

these four characteristics. So the file format looks like  

 

We stored all the edge points in a file having following format. 

 

/* 

Image width, Image Height 

Number of points 

Position-X, Position-Y, Gradient, Orientation, Unique Number 

Position-X, Position-Y, Gradient, Orientation, Unique Number 

. 

. 
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. 

. 

Position-X, Position-Y, Gradient, Orientation, Unique Number 

*/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3 
 

Point Clustering 
 

Clustering techniques are very useful for image processing and pattern recognition. The 

objective of clustering analysis is to partition a set of points into groups or clusters that are 

natural according to some similarity measure. Clustering algorithms frequently use 

computational geometry, as the similarity between clusters is usually expressed in terms of 

Euclidean distances between points in a feature space. 

 

Clustering-based algorithm is used to reduce the number of points for two key reasons. 

First, it reduces the processing time of the following steps, and second, it improves the results 

of the linking step, which when the points are close together might find multiple lines where 

there should be a single contour. Geometric algorithms can be more time consuming than 

local processing pixel-based algorithms. Therefore, it is convenient to reduce the input size. 

When doing so, however, it is important for the new point set to resemble the initial point set. 

This is similar to the geometric problem of dot map simplification which, given a point set, 

tries to find a smaller set whose distribution approximates that of the original set [6]. The 

difference is that in our case we also require the orientations to approximate those of the 

original set. 

 

 

3.1     Algorithm 
 

Number of points are reduced using a simple iterative greedy algorithm that repeatedly 

merges the closest pair of points into a new point until the distance between the closest pair 

reaches a threshold dMAX ; see  Fig.  3.1. 

 

 

 

 

 

 

 

Fig 3.1 Pictorial representation of a particular situation while clustering 
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When a pair of points is merged into one, the values for the new point are weighted 

averages of the values of the original points. This ensures that the distribution and 

orientations of the new point set approximate those of the original set; see Fig. 3.2. However, 

we must take special care to determine the new orientation. Stepwise algorithm is as given 

below 

1) Find d_min: 

 d_min is the minimum distance among all the edge points. 

2) Set d_max: 

d_max = c*d_min , c is inversely proportional to the number of points retained after 

clustering. 

 

3) Find featurepairs(FP): 

 Feature pairs are set of pairs of points whose distance is less than d_max. 

 

4) Find Eligible pair for clustering: 

To find the eligible pair to be clustered from FP whose distance is less than all other 

points in FP. Let that pair be P={p1,p2}. 

 

5) Merge P 

Two points in P are merged by using following formulas and the new point is given a 

unique number . 

 

 

 

 

Where α
′
i ∈∈∈∈ {αi , αi + π} and α

′
j ∈∈∈∈ {αj , αj + π} are chosen so that the orientation of pk is

 close to the orientations of both pi and pj : 

if |αi − αj | ≤ 
π

2 then α
′
i = αi and α

′
j = αj ; 

if αi < αj then α
′
i = αi + π and α

′
j = αj , and  

if αj < αi, then α
′
i = αi and α

′
j   = αj  + π. 

 

 

6) Update step 

 Reomve points P from the original set. 

 Add new merged point to original set. 



 Remove all pairs of points in FP contains P. 

 Add pairs formed by merged point and other points whose distance is less than dmax. 

 

 

Repeat 4,5,6 until for every edge point there is no other point with in dmax. 

 

 

3.2     Output 
 
The output format is just the same as that of the previous stage. The only difference is 
number of points in the output of clustering are less than that of the previous stage. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



12  

 

Chapter 4 
 

Point Linking 
 

After an image has been segmented into a set of regions or edge pixels, the next step is to 

find the contours determined by those regions or pixels. This is usually done by a simple 

contour tracing algorithm, that traces the boundaries by starting from a known contour pixel 

and repeatedly moving to adjacent contour pixels until a stopping condition is met (usually 

returning to the original pixel). Contours obtained in this way are then stored as a sequence of 

pixels. However, these algorithms are very simple; the algorithms only work with very clean 

boundaries. Another possibility is to use edge linking algorithms, which link edge pixels if 

they are within a small neighbourhood and have a similar magnitude or direction [28–30, 34]. 

 

The linking step is the one that actually finds the contours. Prior to this step, we have a 

set of oriented points that have to be connected in order to find the contours. The objective is 

to find a set of paths representing the contours. These paths are sequences of line segments 

between the given points, or polylines. Paths can be represented by other types of functions, 

such as spline curves, but we use polylines because they are efficient for computations and 

because any curve can still be approximated by straight line segments. 

 

Similar to edge linking algorithms, our algorithm links points based on proximity and 

orientation. However, our linking algorithm is conceptually simpler. A typical pixel-based 

contour extraction algorithm might: (1) extract edge pixels with an edge detector, (2) fill gaps 

between edges, (3) connect pixels (contour tracing), and optionally (4) approximate the 

contours with line segments. In our method, the edge detection is the same, but steps 2 to 4 

are all done by the linking algorithm. Gaps are filled by linking points, and there is no need 

for a line approximation step, as points are linked by line segments. Also, pixel based 

algorithms usually have to consider multiple special cases. In contrast, our linking algorithm 

works by following very simple rules. We now describe the algorithm. 

 

4.1     Algorithm 

 

The algorithm extends the contour line in both the sides until it cannot extend it further 

given some constraints which are explained below. 

 



 

 

 

The initial segment of the new path is determined by a pair of isolated points (pi, pj ) 

within the threshold distance dMAX , such that the weight w(pi, pj ) is the maximum. Next, the 

path is extended at both ends by repeatedly adding points until there are no more candidates 

or the added point is already part of some path before being added; When extending a path P 

= (. . . , pi−2, pi−1, pi ) from the end point pi, the algorithm takes the point px with the best 

weight and that satisfies the following conditions: (1) the distance from px to pi is at most 

dMAX , and (2) the turn angle from pi−1pi to pipx is at most π/2. Fig. 4.1 provides an example of 

the point with the best weight being selected from among pa, pb, and pc, since pd and pe do not 

satisfy the given conditions. 

 

 

 

Fig 4.1 While extending the path, only points in the grey area are considered 
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The weight w(pi, pj ) of a pair of points (pi, pj ) is determined by the distance between 

them |pipj | and the difference between their orientations and the orientation of the segment 

pipj . Therefore, the weight depends on two parameters dMAX and αMAX . We use a function 

that decreases when the distance or the differences between the orientations increase, and that 

has a minimum value of 0 when the distance or the differences between the orientations are 

greater than or equal to dMAX or αMAX . Using this function, we link pairs of points if their 

weight is greater than 0. 
 

We next describe the weight function. Let a
i
ij be the difference between the orientation 

of point pi and segment pipj ; and let a
j
ij be the difference between the orientation of point pj 

and segment pipj . We determine a weight for the distance between the points |pipj | and for 

each of the orientation differences a
i
ij and a

j
ij. These weights are higher when the values are  

smaller,  and  therefore,  we  take  the  minimum  of  the  three  values  as  the  weight  for the 

pair of points.  Intuitively, this is the value for the worst of the three:  the distance and each of 

the orientation  differences. 

 

Fig 4.2 As there is no point in the grey region, the path can not be extended further 

 

 

4.2     Output 

 

As this stage links the oriented points, we get paths (contours) as output of this stage.  

 

 

 



Chapter 5 
 

Experiments and Results 
 

There are four main tuning parameters upon which the final contours depend. In this 

section we include different experimentations that we carried out by altering these parameters 

and present the corresponding observations. The four tuning parameters are given below 

 

The data set used in experiments is BSDS300 (Berkeley Segmentation Data Set). 

 

T_par(Edge detection stage) 

 For removing weak edges after edge detection process we use threshold as described 

in equation (2.3) . This equation is adaptive. By changing this parameter different classes of 

images gets better results. 

Threshold(I) = mean(Grad(i,j)) + (255 - mean(Grad(i,j)))/t_par 

 

Cc  (Clustering stage) 

 In order to assure minimum distance between two points after clustering, we provide 

Cc accordingly. By changing this parameter we can control the number of points for the next 

stage i.e, linking. 

d_max = Cc  *d_min 

 

CL (Linking stage) 

 In order to define the maximum proximity between points to get linked in the linking 

stage, we provide Cl accordingly.  

d_max = Cl  *d_min 

 

AlphaL( Linking stage) 

 This parameter deals with the allowable difference of orientation of the points to be 

linked. If orientation difference is more than this parameter the points are not linked. 
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5.1    How T_par affects ? 

 

 

Fig 5.1.1 Original Image 

 

 The threshold varies inversely with respect to t_par as per the given equation. If the 

edges of interest are weak then it is quite possible that we might loose them in the first stage 

itself. This is more likely to happen when the variance of the gradients is less and we loose 

the edges of interest. In another case, if the edges of interest are strong but the mean is low, 

then the output might come out to be noisy. In order to prevent this the threshold should be 

increased with help of T_par.  

 

Below here it is explained with help of an example how T_par affects the final output 

and can be used to improve the same. As it can be seen in the images that for higher threshold 

(lower T-par) the top of the leaf is thresholded so it is not linked in the later stage (Fig 5.1.2 

and Fig 5.1.4). When we decrease the threshold (higher T_par), result gets improved, 

although this might lead to increment in noise in some cases. 

 

 

 

 



 

 

Fig 5.1.2 Gardient image for t_par = 3 

 

 

 

 

Fig 5.1.3 Gardient image for t_par = 4 
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Fig 5.1.4 Linked image for T_par = 3 

 

 

 

 

 

Fig 5.1.5 Linked image for T_par = 4 

 

 

 

 



5.2    How Cc affects ? 

 

 

 

Fig 5.2.1 Original image 

 

 

 The purpose of the clustering is to reduce the number of points obtained by the output 

of edge detector, at the same time removing the redundant point representations of the same 

contour. This can be achieved by maintaining dmax, which depends on Cc.  

 

 We experimented with different values of Cc on an image. As it can be seen from the 

results that for lower Cc  the redundancy is more, at the same time number of points are more 

than required. While in case of higher values of Cc , the basic structure is compromised. 
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Fig 5.2.2 Clustered image with CC = 2 (554 points) 

 

 

 

Fig 5.2.2 Clustered image with CC = 3 (298) 

 

 



 

Fig 5.2.2 Clustered image with CC = 4 (202) 

 

 

 

5.3    How CL affects? 

 

 It is the measure of proximity for two points to be linked. For lower values of CL there 

might exist discontinuities in a contour. This is possible when the edge is weak on some 

specific portion of the contour because of which less number of edge points represent that 

portion distance between two points to be linked is more than dmax. For higher values of CL 

wrong points are linked at times.  

 

In Fig 5.3.1 (CL = 3), discontinuities are found on the wings of aeroplane. While in 

case of Fig 5.3.2 (CL = 4) those discontinuities are filled. But going further, for CL = 5 (Fig 

5.3.3) we can find some noisy contours, which is undesirable.  
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Fig 5.3.1 Linked image with CL = 3 

 

 

 

 

 

 
 

Fig 5.3.2 Linked image with CL = 4 

 

 

 



 
 

Fig 5.3.3 Linked image with CL = 5 

 

 

 

 

 

5.4    How AlphaL  affects? 

 

AlphaL is used as a higher bound for the different points to get linked on the basis of 

their orientations. Lower values of AlphaL will lead to discontinuities in the contour with 

curvature parts in it. While in case of higher values of AlphaL false contours are often formed 

. 

 Values of AlphaL are varied from 35 to 45 and finally 60 in the figures given below. It 

can be observed in the cockpit region of the aeroplane that there are discontinuity in the first 

image (AlphaL = 35), which is partially filled in the second image (AlphaL = 45). But for the 

third image (AlphaL = 60), false contours can be observed.  

 

 



24  

 

 

Fig 5.4.1 Linked image for AlphaL = 35 

 

 

 

 

Fig 5.4.2 Linked image for AlphaL = 45 

 

 



 

Fig 5.4.3 Linked image for AlphaL = 60 

 

5.5    Results 

 

Image A 

      

Fig 5.5.1.1 Original Image    Fig 5.5.1.2 Gradient Image with 12,312 points  

With T_par = 3 
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   Fig 5.5.1.3 Clustered Image with 1597 points   Fig 5.5.1.4 contour image with 527 paths 

(CC  = 3)    (CL = 4 , AlphaL = 35) 

Image B 

 

Fig 5.5.2.1 Original image 

 

 

 



 

 

 

Fig 5.5.2.2 Gradient image with 8,482 points 

With T_par = 3 

 

 

Fig 5.5.2.2 Clustered image with 1,291 points 

(CC  = 3) 

 

 

Fig 5.5.2.3 Linked image with 390 paths(CL = 3 , AlphaL = 45) 
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Image C 

 

    

Fig 5.5.3.1 Original image 

 

 

Fig 5.5.3.2 Gradient image with 16,879 points (T_par = 3) 



 

Fig 5.5.3.3 Clustered image with 2042 points (CC = 3) 

 

 

Fig 5.5.3.3 Clustered image with 1097 paths (CL = 3 , AlphaL = 35) 
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5.6    Work Done and Work Division 

 

 We have implemented the mentioned thesis except for the last part (which is not 

mandatory to find contours) and obtained satisfactory results. Apart from that we 

experimented on different images of BSDS300 and some of our own images by altering all 

the possible tuning parameters. In terms of Modules 

 

Module 1 – Finding oriented edge points  (Bipin) 

Module 2 – Clustering & Testing   (Falak) 

Module 3 – Linking & Integration of Modules (Teja) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 5 
 

Conclusion 
 

• Optimum value of T_par is found to be between 3 and 4. For images in which the 

variance of the gradient is low, higher T_par is desirable. For images with higher 

variance, lower value of T_par is desired. 

• From the above point, we propose what could be an improved way of determining the 

threshold of the gradient.  In the thesis [1], the formula for an image is given as in 

equation 2.3  

o Threshold(I) = mean(Grad(i,j)) + (255 - mean(Grad(i,j)))/3 

• Instead of the above equation, we first introduced T_par, which worked better. But 

this doesn’t select the threshold automatically. 

o Threshold(I) = mean(Grad(i,j)) + (255 - mean(Grad(i,j)))/T_par 

•  After that, a new method is proposed for determining value of threshold which is 

adaptive, which could provide better results. This method utilizes the standard 

deviation of gradients of edge points. The formula for threshold is given as 

o Threshold(I) = mean(Grad(i,j)) + (1.5) *  (std deviation of grad) 

• Optimum value for CC is found to be 3 to 4. As CC is increased from optimum value, 

basic structure is often lost in case of contours with curvature, although it could 

provide better results for contours with long straight regions. 

• While on the other side, if CC is less than the optimum value, number of points may 

be more than required, which makes it less efficient for linking stage. Also we may 

get double contour lines in some cases. 

• Optimum value for CL is found to be 3 to 4. Lower values of CL can lead to broken 

contours. As it gets higher, contours become closed and higher values of CL can get 

false contours (noise). 

• Optimum values of AlphaL are found to be 30 to 50 degree. For lower values of 

AlphaL contours with curvature may be found to be broken. For values of AlphaL that 

are much higher, false contours are formed. 

• General practice for choosing CL and AlphaL is, one of them is kept on lower side and 

the other one is kept on the higher side. This is done in order to improve result 

without introducing much of noise. Although it would depend on the content of the 

image. 
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